MySQL 5.6.14 Source Code Document
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
tree.h
1 /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
2 /*
3  * Copyright 2002 Niels Provos <provos@citi.umich.edu>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  * notice, this list of conditions and the following disclaimer in the
13  * documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef _SYS_TREE_H_
28 #define _SYS_TREE_H_
29 
30 /*
31  * This file defines data structures for different types of trees:
32  * splay trees and red-black trees.
33  *
34  * A splay tree is a self-organizing data structure. Every operation
35  * on the tree causes a splay to happen. The splay moves the requested
36  * node to the root of the tree and partly rebalances it.
37  *
38  * This has the benefit that request locality causes faster lookups as
39  * the requested nodes move to the top of the tree. On the other hand,
40  * every lookup causes memory writes.
41  *
42  * The Balance Theorem bounds the total access time for m operations
43  * and n inserts on an initially empty tree as O((m + n)lg n). The
44  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
45  *
46  * A red-black tree is a binary search tree with the node color as an
47  * extra attribute. It fulfills a set of conditions:
48  * - every search path from the root to a leaf consists of the
49  * same number of black nodes,
50  * - each red node (except for the root) has a black parent,
51  * - each leaf node is black.
52  *
53  * Every operation on a red-black tree is bounded as O(lg n).
54  * The maximum height of a red-black tree is 2lg (n+1).
55  */
56 
57 #define SPLAY_HEAD(name, type) \
58 struct name { \
59  struct type *sph_root; /* root of the tree */ \
60 }
61 
62 #define SPLAY_INITIALIZER(root) \
63  { NULL }
64 
65 #define SPLAY_INIT(root) do { \
66  (root)->sph_root = NULL; \
67 } while (0)
68 
69 #define SPLAY_ENTRY(type) \
70 struct { \
71  struct type *spe_left; /* left element */ \
72  struct type *spe_right; /* right element */ \
73 }
74 
75 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
76 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
77 #define SPLAY_ROOT(head) (head)->sph_root
78 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
79 
80 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
81 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
82  SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
83  SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
84  (head)->sph_root = tmp; \
85 } while (0)
86 
87 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
88  SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
89  SPLAY_LEFT(tmp, field) = (head)->sph_root; \
90  (head)->sph_root = tmp; \
91 } while (0)
92 
93 #define SPLAY_LINKLEFT(head, tmp, field) do { \
94  SPLAY_LEFT(tmp, field) = (head)->sph_root; \
95  tmp = (head)->sph_root; \
96  (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
97 } while (0)
98 
99 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
100  SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
101  tmp = (head)->sph_root; \
102  (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
103 } while (0)
104 
105 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
106  SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
107  SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
108  SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
109  SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
110 } while (0)
111 
112 /* Generates prototypes and inline functions */
113 
114 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
115 void name##_SPLAY(struct name *, struct type *); \
116 void name##_SPLAY_MINMAX(struct name *, int); \
117 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
118 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
119  \
120 /* Finds the node with the same key as elm */ \
121 static __inline struct type * \
122 name##_SPLAY_FIND(struct name *head, struct type *elm) \
123 { \
124  if (SPLAY_EMPTY(head)) \
125  return(NULL); \
126  name##_SPLAY(head, elm); \
127  if ((cmp)(elm, (head)->sph_root) == 0) \
128  return (head->sph_root); \
129  return (NULL); \
130 } \
131  \
132 static __inline struct type * \
133 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
134 { \
135  name##_SPLAY(head, elm); \
136  if (SPLAY_RIGHT(elm, field) != NULL) { \
137  elm = SPLAY_RIGHT(elm, field); \
138  while (SPLAY_LEFT(elm, field) != NULL) { \
139  elm = SPLAY_LEFT(elm, field); \
140  } \
141  } else \
142  elm = NULL; \
143  return (elm); \
144 } \
145  \
146 static __inline struct type * \
147 name##_SPLAY_MIN_MAX(struct name *head, int val) \
148 { \
149  name##_SPLAY_MINMAX(head, val); \
150  return (SPLAY_ROOT(head)); \
151 }
152 
153 /* Main splay operation.
154  * Moves node close to the key of elm to top
155  */
156 #define SPLAY_GENERATE(name, type, field, cmp) \
157 struct type * \
158 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
159 { \
160  if (SPLAY_EMPTY(head)) { \
161  SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
162  } else { \
163  int __comp; \
164  name##_SPLAY(head, elm); \
165  __comp = (cmp)(elm, (head)->sph_root); \
166  if(__comp < 0) { \
167  SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
168  SPLAY_RIGHT(elm, field) = (head)->sph_root; \
169  SPLAY_LEFT((head)->sph_root, field) = NULL; \
170  } else if (__comp > 0) { \
171  SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
172  SPLAY_LEFT(elm, field) = (head)->sph_root; \
173  SPLAY_RIGHT((head)->sph_root, field) = NULL; \
174  } else \
175  return ((head)->sph_root); \
176  } \
177  (head)->sph_root = (elm); \
178  return (NULL); \
179 } \
180  \
181 struct type * \
182 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
183 { \
184  struct type *__tmp; \
185  if (SPLAY_EMPTY(head)) \
186  return (NULL); \
187  name##_SPLAY(head, elm); \
188  if ((cmp)(elm, (head)->sph_root) == 0) { \
189  if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
190  (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
191  } else { \
192  __tmp = SPLAY_RIGHT((head)->sph_root, field); \
193  (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
194  name##_SPLAY(head, elm); \
195  SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
196  } \
197  return (elm); \
198  } \
199  return (NULL); \
200 } \
201  \
202 void \
203 name##_SPLAY(struct name *head, struct type *elm) \
204 { \
205  struct type __node, *__left, *__right, *__tmp; \
206  int __comp; \
207 \
208  SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
209  __left = __right = &__node; \
210 \
211  while ((__comp = (cmp)(elm, (head)->sph_root))) { \
212  if (__comp < 0) { \
213  __tmp = SPLAY_LEFT((head)->sph_root, field); \
214  if (__tmp == NULL) \
215  break; \
216  if ((cmp)(elm, __tmp) < 0){ \
217  SPLAY_ROTATE_RIGHT(head, __tmp, field); \
218  if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
219  break; \
220  } \
221  SPLAY_LINKLEFT(head, __right, field); \
222  } else if (__comp > 0) { \
223  __tmp = SPLAY_RIGHT((head)->sph_root, field); \
224  if (__tmp == NULL) \
225  break; \
226  if ((cmp)(elm, __tmp) > 0){ \
227  SPLAY_ROTATE_LEFT(head, __tmp, field); \
228  if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
229  break; \
230  } \
231  SPLAY_LINKRIGHT(head, __left, field); \
232  } \
233  } \
234  SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
235 } \
236  \
237 /* Splay with either the minimum or the maximum element \
238  * Used to find minimum or maximum element in tree. \
239  */ \
240 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
241 { \
242  struct type __node, *__left, *__right, *__tmp; \
243 \
244  SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
245  __left = __right = &__node; \
246 \
247  while (1) { \
248  if (__comp < 0) { \
249  __tmp = SPLAY_LEFT((head)->sph_root, field); \
250  if (__tmp == NULL) \
251  break; \
252  if (__comp < 0){ \
253  SPLAY_ROTATE_RIGHT(head, __tmp, field); \
254  if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
255  break; \
256  } \
257  SPLAY_LINKLEFT(head, __right, field); \
258  } else if (__comp > 0) { \
259  __tmp = SPLAY_RIGHT((head)->sph_root, field); \
260  if (__tmp == NULL) \
261  break; \
262  if (__comp > 0) { \
263  SPLAY_ROTATE_LEFT(head, __tmp, field); \
264  if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
265  break; \
266  } \
267  SPLAY_LINKRIGHT(head, __left, field); \
268  } \
269  } \
270  SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
271 }
272 
273 #define SPLAY_NEGINF -1
274 #define SPLAY_INF 1
275 
276 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
277 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
278 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
279 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
280 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
281  : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
282 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
283  : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
284 
285 #define SPLAY_FOREACH(x, name, head) \
286  for ((x) = SPLAY_MIN(name, head); \
287  (x) != NULL; \
288  (x) = SPLAY_NEXT(name, head, x))
289 
290 /* Macros that define a red-back tree */
291 #define RB_HEAD(name, type) \
292 struct name { \
293  struct type *rbh_root; /* root of the tree */ \
294 }
295 
296 #define RB_INITIALIZER(root) \
297  { NULL }
298 
299 #define RB_INIT(root) do { \
300  (root)->rbh_root = NULL; \
301 } while (0)
302 
303 #define RB_BLACK 0
304 #define RB_RED 1
305 #define RB_ENTRY(type) \
306 struct { \
307  struct type *rbe_left; /* left element */ \
308  struct type *rbe_right; /* right element */ \
309  struct type *rbe_parent; /* parent element */ \
310  int rbe_color; /* node color */ \
311 }
312 
313 #define RB_LEFT(elm, field) (elm)->field.rbe_left
314 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
315 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
316 #define RB_COLOR(elm, field) (elm)->field.rbe_color
317 #define RB_ROOT(head) (head)->rbh_root
318 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
319 
320 #define RB_SET(elm, parent, field) do { \
321  RB_PARENT(elm, field) = parent; \
322  RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
323  RB_COLOR(elm, field) = RB_RED; \
324 } while (0)
325 
326 #define RB_SET_BLACKRED(black, red, field) do { \
327  RB_COLOR(black, field) = RB_BLACK; \
328  RB_COLOR(red, field) = RB_RED; \
329 } while (0)
330 
331 #ifndef RB_AUGMENT
332 #define RB_AUGMENT(x)
333 #endif
334 
335 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
336  (tmp) = RB_RIGHT(elm, field); \
337  if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
338  RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
339  } \
340  RB_AUGMENT(elm); \
341  if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
342  if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
343  RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
344  else \
345  RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
346  } else \
347  (head)->rbh_root = (tmp); \
348  RB_LEFT(tmp, field) = (elm); \
349  RB_PARENT(elm, field) = (tmp); \
350  RB_AUGMENT(tmp); \
351  if ((RB_PARENT(tmp, field))) \
352  RB_AUGMENT(RB_PARENT(tmp, field)); \
353 } while (0)
354 
355 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
356  (tmp) = RB_LEFT(elm, field); \
357  if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
358  RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
359  } \
360  RB_AUGMENT(elm); \
361  if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
362  if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
363  RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
364  else \
365  RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
366  } else \
367  (head)->rbh_root = (tmp); \
368  RB_RIGHT(tmp, field) = (elm); \
369  RB_PARENT(elm, field) = (tmp); \
370  RB_AUGMENT(tmp); \
371  if ((RB_PARENT(tmp, field))) \
372  RB_AUGMENT(RB_PARENT(tmp, field)); \
373 } while (0)
374 
375 /* Generates prototypes and inline functions */
376 #define RB_PROTOTYPE(name, type, field, cmp) \
377 void name##_RB_INSERT_COLOR(struct name *, struct type *); \
378 void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
379 struct type *name##_RB_REMOVE(struct name *, struct type *); \
380 struct type *name##_RB_INSERT(struct name *, struct type *); \
381 struct type *name##_RB_FIND(struct name *, struct type *); \
382 struct type *name##_RB_NEXT(struct type *); \
383 struct type *name##_RB_MINMAX(struct name *, int); \
384  \
385 
386 /* Main rb operation.
387  * Moves node close to the key of elm to top
388  */
389 #define RB_GENERATE(name, type, field, cmp) \
390 void \
391 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
392 { \
393  struct type *parent, *gparent, *tmp; \
394  while ((parent = RB_PARENT(elm, field)) && \
395  RB_COLOR(parent, field) == RB_RED) { \
396  gparent = RB_PARENT(parent, field); \
397  if (parent == RB_LEFT(gparent, field)) { \
398  tmp = RB_RIGHT(gparent, field); \
399  if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
400  RB_COLOR(tmp, field) = RB_BLACK; \
401  RB_SET_BLACKRED(parent, gparent, field);\
402  elm = gparent; \
403  continue; \
404  } \
405  if (RB_RIGHT(parent, field) == elm) { \
406  RB_ROTATE_LEFT(head, parent, tmp, field);\
407  tmp = parent; \
408  parent = elm; \
409  elm = tmp; \
410  } \
411  RB_SET_BLACKRED(parent, gparent, field); \
412  RB_ROTATE_RIGHT(head, gparent, tmp, field); \
413  } else { \
414  tmp = RB_LEFT(gparent, field); \
415  if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
416  RB_COLOR(tmp, field) = RB_BLACK; \
417  RB_SET_BLACKRED(parent, gparent, field);\
418  elm = gparent; \
419  continue; \
420  } \
421  if (RB_LEFT(parent, field) == elm) { \
422  RB_ROTATE_RIGHT(head, parent, tmp, field);\
423  tmp = parent; \
424  parent = elm; \
425  elm = tmp; \
426  } \
427  RB_SET_BLACKRED(parent, gparent, field); \
428  RB_ROTATE_LEFT(head, gparent, tmp, field); \
429  } \
430  } \
431  RB_COLOR(head->rbh_root, field) = RB_BLACK; \
432 } \
433  \
434 void \
435 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
436 { \
437  struct type *tmp; \
438  while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
439  elm != RB_ROOT(head)) { \
440  if (RB_LEFT(parent, field) == elm) { \
441  tmp = RB_RIGHT(parent, field); \
442  if (RB_COLOR(tmp, field) == RB_RED) { \
443  RB_SET_BLACKRED(tmp, parent, field); \
444  RB_ROTATE_LEFT(head, parent, tmp, field);\
445  tmp = RB_RIGHT(parent, field); \
446  } \
447  if ((RB_LEFT(tmp, field) == NULL || \
448  RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
449  (RB_RIGHT(tmp, field) == NULL || \
450  RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
451  RB_COLOR(tmp, field) = RB_RED; \
452  elm = parent; \
453  parent = RB_PARENT(elm, field); \
454  } else { \
455  if (RB_RIGHT(tmp, field) == NULL || \
456  RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
457  struct type *oleft; \
458  if ((oleft = RB_LEFT(tmp, field)))\
459  RB_COLOR(oleft, field) = RB_BLACK;\
460  RB_COLOR(tmp, field) = RB_RED; \
461  RB_ROTATE_RIGHT(head, tmp, oleft, field);\
462  tmp = RB_RIGHT(parent, field); \
463  } \
464  RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
465  RB_COLOR(parent, field) = RB_BLACK; \
466  if (RB_RIGHT(tmp, field)) \
467  RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
468  RB_ROTATE_LEFT(head, parent, tmp, field);\
469  elm = RB_ROOT(head); \
470  break; \
471  } \
472  } else { \
473  tmp = RB_LEFT(parent, field); \
474  if (RB_COLOR(tmp, field) == RB_RED) { \
475  RB_SET_BLACKRED(tmp, parent, field); \
476  RB_ROTATE_RIGHT(head, parent, tmp, field);\
477  tmp = RB_LEFT(parent, field); \
478  } \
479  if ((RB_LEFT(tmp, field) == NULL || \
480  RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
481  (RB_RIGHT(tmp, field) == NULL || \
482  RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
483  RB_COLOR(tmp, field) = RB_RED; \
484  elm = parent; \
485  parent = RB_PARENT(elm, field); \
486  } else { \
487  if (RB_LEFT(tmp, field) == NULL || \
488  RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
489  struct type *oright; \
490  if ((oright = RB_RIGHT(tmp, field)))\
491  RB_COLOR(oright, field) = RB_BLACK;\
492  RB_COLOR(tmp, field) = RB_RED; \
493  RB_ROTATE_LEFT(head, tmp, oright, field);\
494  tmp = RB_LEFT(parent, field); \
495  } \
496  RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
497  RB_COLOR(parent, field) = RB_BLACK; \
498  if (RB_LEFT(tmp, field)) \
499  RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
500  RB_ROTATE_RIGHT(head, parent, tmp, field);\
501  elm = RB_ROOT(head); \
502  break; \
503  } \
504  } \
505  } \
506  if (elm) \
507  RB_COLOR(elm, field) = RB_BLACK; \
508 } \
509  \
510 struct type * \
511 name##_RB_REMOVE(struct name *head, struct type *elm) \
512 { \
513  struct type *child, *parent, *old = elm; \
514  int color; \
515  if (RB_LEFT(elm, field) == NULL) \
516  child = RB_RIGHT(elm, field); \
517  else if (RB_RIGHT(elm, field) == NULL) \
518  child = RB_LEFT(elm, field); \
519  else { \
520  struct type *left; \
521  elm = RB_RIGHT(elm, field); \
522  while ((left = RB_LEFT(elm, field))) \
523  elm = left; \
524  child = RB_RIGHT(elm, field); \
525  parent = RB_PARENT(elm, field); \
526  color = RB_COLOR(elm, field); \
527  if (child) \
528  RB_PARENT(child, field) = parent; \
529  if (parent) { \
530  if (RB_LEFT(parent, field) == elm) \
531  RB_LEFT(parent, field) = child; \
532  else \
533  RB_RIGHT(parent, field) = child; \
534  RB_AUGMENT(parent); \
535  } else \
536  RB_ROOT(head) = child; \
537  if (RB_PARENT(elm, field) == old) \
538  parent = elm; \
539  (elm)->field = (old)->field; \
540  if (RB_PARENT(old, field)) { \
541  if (RB_LEFT(RB_PARENT(old, field), field) == old)\
542  RB_LEFT(RB_PARENT(old, field), field) = elm;\
543  else \
544  RB_RIGHT(RB_PARENT(old, field), field) = elm;\
545  RB_AUGMENT(RB_PARENT(old, field)); \
546  } else \
547  RB_ROOT(head) = elm; \
548  RB_PARENT(RB_LEFT(old, field), field) = elm; \
549  if (RB_RIGHT(old, field)) \
550  RB_PARENT(RB_RIGHT(old, field), field) = elm; \
551  if (parent) { \
552  left = parent; \
553  do { \
554  RB_AUGMENT(left); \
555  } while ((left = RB_PARENT(left, field))); \
556  } \
557  goto color; \
558  } \
559  parent = RB_PARENT(elm, field); \
560  color = RB_COLOR(elm, field); \
561  if (child) \
562  RB_PARENT(child, field) = parent; \
563  if (parent) { \
564  if (RB_LEFT(parent, field) == elm) \
565  RB_LEFT(parent, field) = child; \
566  else \
567  RB_RIGHT(parent, field) = child; \
568  RB_AUGMENT(parent); \
569  } else \
570  RB_ROOT(head) = child; \
571 color: \
572  if (color == RB_BLACK) \
573  name##_RB_REMOVE_COLOR(head, parent, child); \
574  return (old); \
575 } \
576  \
577 /* Inserts a node into the RB tree */ \
578 struct type * \
579 name##_RB_INSERT(struct name *head, struct type *elm) \
580 { \
581  struct type *tmp; \
582  struct type *parent = NULL; \
583  int comp = 0; \
584  tmp = RB_ROOT(head); \
585  while (tmp) { \
586  parent = tmp; \
587  comp = (cmp)(elm, parent); \
588  if (comp < 0) \
589  tmp = RB_LEFT(tmp, field); \
590  else if (comp > 0) \
591  tmp = RB_RIGHT(tmp, field); \
592  else \
593  return (tmp); \
594  } \
595  RB_SET(elm, parent, field); \
596  if (parent != NULL) { \
597  if (comp < 0) \
598  RB_LEFT(parent, field) = elm; \
599  else \
600  RB_RIGHT(parent, field) = elm; \
601  RB_AUGMENT(parent); \
602  } else \
603  RB_ROOT(head) = elm; \
604  name##_RB_INSERT_COLOR(head, elm); \
605  return (NULL); \
606 } \
607  \
608 /* Finds the node with the same key as elm */ \
609 struct type * \
610 name##_RB_FIND(struct name *head, struct type *elm) \
611 { \
612  struct type *tmp = RB_ROOT(head); \
613  int comp; \
614  while (tmp) { \
615  comp = cmp(elm, tmp); \
616  if (comp < 0) \
617  tmp = RB_LEFT(tmp, field); \
618  else if (comp > 0) \
619  tmp = RB_RIGHT(tmp, field); \
620  else \
621  return (tmp); \
622  } \
623  return (NULL); \
624 } \
625  \
626 struct type * \
627 name##_RB_NEXT(struct type *elm) \
628 { \
629  if (RB_RIGHT(elm, field)) { \
630  elm = RB_RIGHT(elm, field); \
631  while (RB_LEFT(elm, field)) \
632  elm = RB_LEFT(elm, field); \
633  } else { \
634  if (RB_PARENT(elm, field) && \
635  (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
636  elm = RB_PARENT(elm, field); \
637  else { \
638  while (RB_PARENT(elm, field) && \
639  (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
640  elm = RB_PARENT(elm, field); \
641  elm = RB_PARENT(elm, field); \
642  } \
643  } \
644  return (elm); \
645 } \
646  \
647 struct type * \
648 name##_RB_MINMAX(struct name *head, int val) \
649 { \
650  struct type *tmp = RB_ROOT(head); \
651  struct type *parent = NULL; \
652  while (tmp) { \
653  parent = tmp; \
654  if (val < 0) \
655  tmp = RB_LEFT(tmp, field); \
656  else \
657  tmp = RB_RIGHT(tmp, field); \
658  } \
659  return (parent); \
660 }
661 
662 #define RB_NEGINF -1
663 #define RB_INF 1
664 
665 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
666 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
667 #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
668 #define RB_NEXT(name, x, y) name##_RB_NEXT(y)
669 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
670 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
671 
672 #define RB_FOREACH(x, name, head) \
673  for ((x) = RB_MIN(name, head); \
674  (x) != NULL; \
675  (x) = name##_RB_NEXT(x))
676 
677 #endif /* _SYS_TREE_H_ */
678 /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
679 /*
680  * Copyright 2002 Niels Provos <provos@citi.umich.edu>
681  * All rights reserved.
682  *
683  * Redistribution and use in source and binary forms, with or without
684  * modification, are permitted provided that the following conditions
685  * are met:
686  * 1. Redistributions of source code must retain the above copyright
687  * notice, this list of conditions and the following disclaimer.
688  * 2. Redistributions in binary form must reproduce the above copyright
689  * notice, this list of conditions and the following disclaimer in the
690  * documentation and/or other materials provided with the distribution.
691  *
692  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
693  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
694  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
695  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
696  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
697  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
698  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
699  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
700  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
701  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
702  */
703 
704 #ifndef _SYS_TREE_H_
705 #define _SYS_TREE_H_
706 
707 /*
708  * This file defines data structures for different types of trees:
709  * splay trees and red-black trees.
710  *
711  * A splay tree is a self-organizing data structure. Every operation
712  * on the tree causes a splay to happen. The splay moves the requested
713  * node to the root of the tree and partly rebalances it.
714  *
715  * This has the benefit that request locality causes faster lookups as
716  * the requested nodes move to the top of the tree. On the other hand,
717  * every lookup causes memory writes.
718  *
719  * The Balance Theorem bounds the total access time for m operations
720  * and n inserts on an initially empty tree as O((m + n)lg n). The
721  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
722  *
723  * A red-black tree is a binary search tree with the node color as an
724  * extra attribute. It fulfills a set of conditions:
725  * - every search path from the root to a leaf consists of the
726  * same number of black nodes,
727  * - each red node (except for the root) has a black parent,
728  * - each leaf node is black.
729  *
730  * Every operation on a red-black tree is bounded as O(lg n).
731  * The maximum height of a red-black tree is 2lg (n+1).
732  */
733 
734 #define SPLAY_HEAD(name, type) \
735 struct name { \
736  struct type *sph_root; /* root of the tree */ \
737 }
738 
739 #define SPLAY_INITIALIZER(root) \
740  { NULL }
741 
742 #define SPLAY_INIT(root) do { \
743  (root)->sph_root = NULL; \
744 } while (0)
745 
746 #define SPLAY_ENTRY(type) \
747 struct { \
748  struct type *spe_left; /* left element */ \
749  struct type *spe_right; /* right element */ \
750 }
751 
752 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
753 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
754 #define SPLAY_ROOT(head) (head)->sph_root
755 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
756 
757 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
758 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
759  SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
760  SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
761  (head)->sph_root = tmp; \
762 } while (0)
763 
764 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
765  SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
766  SPLAY_LEFT(tmp, field) = (head)->sph_root; \
767  (head)->sph_root = tmp; \
768 } while (0)
769 
770 #define SPLAY_LINKLEFT(head, tmp, field) do { \
771  SPLAY_LEFT(tmp, field) = (head)->sph_root; \
772  tmp = (head)->sph_root; \
773  (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
774 } while (0)
775 
776 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
777  SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
778  tmp = (head)->sph_root; \
779  (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
780 } while (0)
781 
782 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
783  SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
784  SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
785  SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
786  SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
787 } while (0)
788 
789 /* Generates prototypes and inline functions */
790 
791 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
792 void name##_SPLAY(struct name *, struct type *); \
793 void name##_SPLAY_MINMAX(struct name *, int); \
794 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
795 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
796  \
797 /* Finds the node with the same key as elm */ \
798 static __inline struct type * \
799 name##_SPLAY_FIND(struct name *head, struct type *elm) \
800 { \
801  if (SPLAY_EMPTY(head)) \
802  return(NULL); \
803  name##_SPLAY(head, elm); \
804  if ((cmp)(elm, (head)->sph_root) == 0) \
805  return (head->sph_root); \
806  return (NULL); \
807 } \
808  \
809 static __inline struct type * \
810 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
811 { \
812  name##_SPLAY(head, elm); \
813  if (SPLAY_RIGHT(elm, field) != NULL) { \
814  elm = SPLAY_RIGHT(elm, field); \
815  while (SPLAY_LEFT(elm, field) != NULL) { \
816  elm = SPLAY_LEFT(elm, field); \
817  } \
818  } else \
819  elm = NULL; \
820  return (elm); \
821 } \
822  \
823 static __inline struct type * \
824 name##_SPLAY_MIN_MAX(struct name *head, int val) \
825 { \
826  name##_SPLAY_MINMAX(head, val); \
827  return (SPLAY_ROOT(head)); \
828 }
829 
830 /* Main splay operation.
831  * Moves node close to the key of elm to top
832  */
833 #define SPLAY_GENERATE(name, type, field, cmp) \
834 struct type * \
835 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
836 { \
837  if (SPLAY_EMPTY(head)) { \
838  SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
839  } else { \
840  int __comp; \
841  name##_SPLAY(head, elm); \
842  __comp = (cmp)(elm, (head)->sph_root); \
843  if(__comp < 0) { \
844  SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
845  SPLAY_RIGHT(elm, field) = (head)->sph_root; \
846  SPLAY_LEFT((head)->sph_root, field) = NULL; \
847  } else if (__comp > 0) { \
848  SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
849  SPLAY_LEFT(elm, field) = (head)->sph_root; \
850  SPLAY_RIGHT((head)->sph_root, field) = NULL; \
851  } else \
852  return ((head)->sph_root); \
853  } \
854  (head)->sph_root = (elm); \
855  return (NULL); \
856 } \
857  \
858 struct type * \
859 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
860 { \
861  struct type *__tmp; \
862  if (SPLAY_EMPTY(head)) \
863  return (NULL); \
864  name##_SPLAY(head, elm); \
865  if ((cmp)(elm, (head)->sph_root) == 0) { \
866  if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
867  (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
868  } else { \
869  __tmp = SPLAY_RIGHT((head)->sph_root, field); \
870  (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
871  name##_SPLAY(head, elm); \
872  SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
873  } \
874  return (elm); \
875  } \
876  return (NULL); \
877 } \
878  \
879 void \
880 name##_SPLAY(struct name *head, struct type *elm) \
881 { \
882  struct type __node, *__left, *__right, *__tmp; \
883  int __comp; \
884 \
885  SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
886  __left = __right = &__node; \
887 \
888  while ((__comp = (cmp)(elm, (head)->sph_root))) { \
889  if (__comp < 0) { \
890  __tmp = SPLAY_LEFT((head)->sph_root, field); \
891  if (__tmp == NULL) \
892  break; \
893  if ((cmp)(elm, __tmp) < 0){ \
894  SPLAY_ROTATE_RIGHT(head, __tmp, field); \
895  if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
896  break; \
897  } \
898  SPLAY_LINKLEFT(head, __right, field); \
899  } else if (__comp > 0) { \
900  __tmp = SPLAY_RIGHT((head)->sph_root, field); \
901  if (__tmp == NULL) \
902  break; \
903  if ((cmp)(elm, __tmp) > 0){ \
904  SPLAY_ROTATE_LEFT(head, __tmp, field); \
905  if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
906  break; \
907  } \
908  SPLAY_LINKRIGHT(head, __left, field); \
909  } \
910  } \
911  SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
912 } \
913  \
914 /* Splay with either the minimum or the maximum element \
915  * Used to find minimum or maximum element in tree. \
916  */ \
917 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
918 { \
919  struct type __node, *__left, *__right, *__tmp; \
920 \
921  SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
922  __left = __right = &__node; \
923 \
924  while (1) { \
925  if (__comp < 0) { \
926  __tmp = SPLAY_LEFT((head)->sph_root, field); \
927  if (__tmp == NULL) \
928  break; \
929  if (__comp < 0){ \
930  SPLAY_ROTATE_RIGHT(head, __tmp, field); \
931  if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
932  break; \
933  } \
934  SPLAY_LINKLEFT(head, __right, field); \
935  } else if (__comp > 0) { \
936  __tmp = SPLAY_RIGHT((head)->sph_root, field); \
937  if (__tmp == NULL) \
938  break; \
939  if (__comp > 0) { \
940  SPLAY_ROTATE_LEFT(head, __tmp, field); \
941  if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
942  break; \
943  } \
944  SPLAY_LINKRIGHT(head, __left, field); \
945  } \
946  } \
947  SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
948 }
949 
950 #define SPLAY_NEGINF -1
951 #define SPLAY_INF 1
952 
953 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
954 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
955 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
956 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
957 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
958  : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
959 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
960  : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
961 
962 #define SPLAY_FOREACH(x, name, head) \
963  for ((x) = SPLAY_MIN(name, head); \
964  (x) != NULL; \
965  (x) = SPLAY_NEXT(name, head, x))
966 
967 /* Macros that define a red-back tree */
968 #define RB_HEAD(name, type) \
969 struct name { \
970  struct type *rbh_root; /* root of the tree */ \
971 }
972 
973 #define RB_INITIALIZER(root) \
974  { NULL }
975 
976 #define RB_INIT(root) do { \
977  (root)->rbh_root = NULL; \
978 } while (0)
979 
980 #define RB_BLACK 0
981 #define RB_RED 1
982 #define RB_ENTRY(type) \
983 struct { \
984  struct type *rbe_left; /* left element */ \
985  struct type *rbe_right; /* right element */ \
986  struct type *rbe_parent; /* parent element */ \
987  int rbe_color; /* node color */ \
988 }
989 
990 #define RB_LEFT(elm, field) (elm)->field.rbe_left
991 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
992 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
993 #define RB_COLOR(elm, field) (elm)->field.rbe_color
994 #define RB_ROOT(head) (head)->rbh_root
995 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
996 
997 #define RB_SET(elm, parent, field) do { \
998  RB_PARENT(elm, field) = parent; \
999  RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
1000  RB_COLOR(elm, field) = RB_RED; \
1001 } while (0)
1002 
1003 #define RB_SET_BLACKRED(black, red, field) do { \
1004  RB_COLOR(black, field) = RB_BLACK; \
1005  RB_COLOR(red, field) = RB_RED; \
1006 } while (0)
1007 
1008 #ifndef RB_AUGMENT
1009 #define RB_AUGMENT(x)
1010 #endif
1011 
1012 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
1013  (tmp) = RB_RIGHT(elm, field); \
1014  if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
1015  RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
1016  } \
1017  RB_AUGMENT(elm); \
1018  if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
1019  if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
1020  RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
1021  else \
1022  RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
1023  } else \
1024  (head)->rbh_root = (tmp); \
1025  RB_LEFT(tmp, field) = (elm); \
1026  RB_PARENT(elm, field) = (tmp); \
1027  RB_AUGMENT(tmp); \
1028  if ((RB_PARENT(tmp, field))) \
1029  RB_AUGMENT(RB_PARENT(tmp, field)); \
1030 } while (0)
1031 
1032 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
1033  (tmp) = RB_LEFT(elm, field); \
1034  if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
1035  RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
1036  } \
1037  RB_AUGMENT(elm); \
1038  if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
1039  if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
1040  RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
1041  else \
1042  RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
1043  } else \
1044  (head)->rbh_root = (tmp); \
1045  RB_RIGHT(tmp, field) = (elm); \
1046  RB_PARENT(elm, field) = (tmp); \
1047  RB_AUGMENT(tmp); \
1048  if ((RB_PARENT(tmp, field))) \
1049  RB_AUGMENT(RB_PARENT(tmp, field)); \
1050 } while (0)
1051 
1052 /* Generates prototypes and inline functions */
1053 #define RB_PROTOTYPE(name, type, field, cmp) \
1054 void name##_RB_INSERT_COLOR(struct name *, struct type *); \
1055 void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
1056 struct type *name##_RB_REMOVE(struct name *, struct type *); \
1057 struct type *name##_RB_INSERT(struct name *, struct type *); \
1058 struct type *name##_RB_FIND(struct name *, struct type *); \
1059 struct type *name##_RB_NEXT(struct type *); \
1060 struct type *name##_RB_MINMAX(struct name *, int); \
1061  \
1062 
1063 /* Main rb operation.
1064  * Moves node close to the key of elm to top
1065  */
1066 #define RB_GENERATE(name, type, field, cmp) \
1067 void \
1068 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
1069 { \
1070  struct type *parent, *gparent, *tmp; \
1071  while ((parent = RB_PARENT(elm, field)) && \
1072  RB_COLOR(parent, field) == RB_RED) { \
1073  gparent = RB_PARENT(parent, field); \
1074  if (parent == RB_LEFT(gparent, field)) { \
1075  tmp = RB_RIGHT(gparent, field); \
1076  if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
1077  RB_COLOR(tmp, field) = RB_BLACK; \
1078  RB_SET_BLACKRED(parent, gparent, field);\
1079  elm = gparent; \
1080  continue; \
1081  } \
1082  if (RB_RIGHT(parent, field) == elm) { \
1083  RB_ROTATE_LEFT(head, parent, tmp, field);\
1084  tmp = parent; \
1085  parent = elm; \
1086  elm = tmp; \
1087  } \
1088  RB_SET_BLACKRED(parent, gparent, field); \
1089  RB_ROTATE_RIGHT(head, gparent, tmp, field); \
1090  } else { \
1091  tmp = RB_LEFT(gparent, field); \
1092  if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
1093  RB_COLOR(tmp, field) = RB_BLACK; \
1094  RB_SET_BLACKRED(parent, gparent, field);\
1095  elm = gparent; \
1096  continue; \
1097  } \
1098  if (RB_LEFT(parent, field) == elm) { \
1099  RB_ROTATE_RIGHT(head, parent, tmp, field);\
1100  tmp = parent; \
1101  parent = elm; \
1102  elm = tmp; \
1103  } \
1104  RB_SET_BLACKRED(parent, gparent, field); \
1105  RB_ROTATE_LEFT(head, gparent, tmp, field); \
1106  } \
1107  } \
1108  RB_COLOR(head->rbh_root, field) = RB_BLACK; \
1109 } \
1110  \
1111 void \
1112 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
1113 { \
1114  struct type *tmp; \
1115  while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
1116  elm != RB_ROOT(head)) { \
1117  if (RB_LEFT(parent, field) == elm) { \
1118  tmp = RB_RIGHT(parent, field); \
1119  if (RB_COLOR(tmp, field) == RB_RED) { \
1120  RB_SET_BLACKRED(tmp, parent, field); \
1121  RB_ROTATE_LEFT(head, parent, tmp, field);\
1122  tmp = RB_RIGHT(parent, field); \
1123  } \
1124  if ((RB_LEFT(tmp, field) == NULL || \
1125  RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
1126  (RB_RIGHT(tmp, field) == NULL || \
1127  RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
1128  RB_COLOR(tmp, field) = RB_RED; \
1129  elm = parent; \
1130  parent = RB_PARENT(elm, field); \
1131  } else { \
1132  if (RB_RIGHT(tmp, field) == NULL || \
1133  RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
1134  struct type *oleft; \
1135  if ((oleft = RB_LEFT(tmp, field)))\
1136  RB_COLOR(oleft, field) = RB_BLACK;\
1137  RB_COLOR(tmp, field) = RB_RED; \
1138  RB_ROTATE_RIGHT(head, tmp, oleft, field);\
1139  tmp = RB_RIGHT(parent, field); \
1140  } \
1141  RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
1142  RB_COLOR(parent, field) = RB_BLACK; \
1143  if (RB_RIGHT(tmp, field)) \
1144  RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
1145  RB_ROTATE_LEFT(head, parent, tmp, field);\
1146  elm = RB_ROOT(head); \
1147  break; \
1148  } \
1149  } else { \
1150  tmp = RB_LEFT(parent, field); \
1151  if (RB_COLOR(tmp, field) == RB_RED) { \
1152  RB_SET_BLACKRED(tmp, parent, field); \
1153  RB_ROTATE_RIGHT(head, parent, tmp, field);\
1154  tmp = RB_LEFT(parent, field); \
1155  } \
1156  if ((RB_LEFT(tmp, field) == NULL || \
1157  RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
1158  (RB_RIGHT(tmp, field) == NULL || \
1159  RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
1160  RB_COLOR(tmp, field) = RB_RED; \
1161  elm = parent; \
1162  parent = RB_PARENT(elm, field); \
1163  } else { \
1164  if (RB_LEFT(tmp, field) == NULL || \
1165  RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
1166  struct type *oright; \
1167  if ((oright = RB_RIGHT(tmp, field)))\
1168  RB_COLOR(oright, field) = RB_BLACK;\
1169  RB_COLOR(tmp, field) = RB_RED; \
1170  RB_ROTATE_LEFT(head, tmp, oright, field);\
1171  tmp = RB_LEFT(parent, field); \
1172  } \
1173  RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
1174  RB_COLOR(parent, field) = RB_BLACK; \
1175  if (RB_LEFT(tmp, field)) \
1176  RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
1177  RB_ROTATE_RIGHT(head, parent, tmp, field);\
1178  elm = RB_ROOT(head); \
1179  break; \
1180  } \
1181  } \
1182  } \
1183  if (elm) \
1184  RB_COLOR(elm, field) = RB_BLACK; \
1185 } \
1186  \
1187 struct type * \
1188 name##_RB_REMOVE(struct name *head, struct type *elm) \
1189 { \
1190  struct type *child, *parent, *old = elm; \
1191  int color; \
1192  if (RB_LEFT(elm, field) == NULL) \
1193  child = RB_RIGHT(elm, field); \
1194  else if (RB_RIGHT(elm, field) == NULL) \
1195  child = RB_LEFT(elm, field); \
1196  else { \
1197  struct type *left; \
1198  elm = RB_RIGHT(elm, field); \
1199  while ((left = RB_LEFT(elm, field))) \
1200  elm = left; \
1201  child = RB_RIGHT(elm, field); \
1202  parent = RB_PARENT(elm, field); \
1203  color = RB_COLOR(elm, field); \
1204  if (child) \
1205  RB_PARENT(child, field) = parent; \
1206  if (parent) { \
1207  if (RB_LEFT(parent, field) == elm) \
1208  RB_LEFT(parent, field) = child; \
1209  else \
1210  RB_RIGHT(parent, field) = child; \
1211  RB_AUGMENT(parent); \
1212  } else \
1213  RB_ROOT(head) = child; \
1214  if (RB_PARENT(elm, field) == old) \
1215  parent = elm; \
1216  (elm)->field = (old)->field; \
1217  if (RB_PARENT(old, field)) { \
1218  if (RB_LEFT(RB_PARENT(old, field), field) == old)\
1219  RB_LEFT(RB_PARENT(old, field), field) = elm;\
1220  else \
1221  RB_RIGHT(RB_PARENT(old, field), field) = elm;\
1222  RB_AUGMENT(RB_PARENT(old, field)); \
1223  } else \
1224  RB_ROOT(head) = elm; \
1225  RB_PARENT(RB_LEFT(old, field), field) = elm; \
1226  if (RB_RIGHT(old, field)) \
1227  RB_PARENT(RB_RIGHT(old, field), field) = elm; \
1228  if (parent) { \
1229  left = parent; \
1230  do { \
1231  RB_AUGMENT(left); \
1232  } while ((left = RB_PARENT(left, field))); \
1233  } \
1234  goto color; \
1235  } \
1236  parent = RB_PARENT(elm, field); \
1237  color = RB_COLOR(elm, field); \
1238  if (child) \
1239  RB_PARENT(child, field) = parent; \
1240  if (parent) { \
1241  if (RB_LEFT(parent, field) == elm) \
1242  RB_LEFT(parent, field) = child; \
1243  else \
1244  RB_RIGHT(parent, field) = child; \
1245  RB_AUGMENT(parent); \
1246  } else \
1247  RB_ROOT(head) = child; \
1248 color: \
1249  if (color == RB_BLACK) \
1250  name##_RB_REMOVE_COLOR(head, parent, child); \
1251  return (old); \
1252 } \
1253  \
1254 /* Inserts a node into the RB tree */ \
1255 struct type * \
1256 name##_RB_INSERT(struct name *head, struct type *elm) \
1257 { \
1258  struct type *tmp; \
1259  struct type *parent = NULL; \
1260  int comp = 0; \
1261  tmp = RB_ROOT(head); \
1262  while (tmp) { \
1263  parent = tmp; \
1264  comp = (cmp)(elm, parent); \
1265  if (comp < 0) \
1266  tmp = RB_LEFT(tmp, field); \
1267  else if (comp > 0) \
1268  tmp = RB_RIGHT(tmp, field); \
1269  else \
1270  return (tmp); \
1271  } \
1272  RB_SET(elm, parent, field); \
1273  if (parent != NULL) { \
1274  if (comp < 0) \
1275  RB_LEFT(parent, field) = elm; \
1276  else \
1277  RB_RIGHT(parent, field) = elm; \
1278  RB_AUGMENT(parent); \
1279  } else \
1280  RB_ROOT(head) = elm; \
1281  name##_RB_INSERT_COLOR(head, elm); \
1282  return (NULL); \
1283 } \
1284  \
1285 /* Finds the node with the same key as elm */ \
1286 struct type * \
1287 name##_RB_FIND(struct name *head, struct type *elm) \
1288 { \
1289  struct type *tmp = RB_ROOT(head); \
1290  int comp; \
1291  while (tmp) { \
1292  comp = cmp(elm, tmp); \
1293  if (comp < 0) \
1294  tmp = RB_LEFT(tmp, field); \
1295  else if (comp > 0) \
1296  tmp = RB_RIGHT(tmp, field); \
1297  else \
1298  return (tmp); \
1299  } \
1300  return (NULL); \
1301 } \
1302  \
1303 struct type * \
1304 name##_RB_NEXT(struct type *elm) \
1305 { \
1306  if (RB_RIGHT(elm, field)) { \
1307  elm = RB_RIGHT(elm, field); \
1308  while (RB_LEFT(elm, field)) \
1309  elm = RB_LEFT(elm, field); \
1310  } else { \
1311  if (RB_PARENT(elm, field) && \
1312  (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
1313  elm = RB_PARENT(elm, field); \
1314  else { \
1315  while (RB_PARENT(elm, field) && \
1316  (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
1317  elm = RB_PARENT(elm, field); \
1318  elm = RB_PARENT(elm, field); \
1319  } \
1320  } \
1321  return (elm); \
1322 } \
1323  \
1324 struct type * \
1325 name##_RB_MINMAX(struct name *head, int val) \
1326 { \
1327  struct type *tmp = RB_ROOT(head); \
1328  struct type *parent = NULL; \
1329  while (tmp) { \
1330  parent = tmp; \
1331  if (val < 0) \
1332  tmp = RB_LEFT(tmp, field); \
1333  else \
1334  tmp = RB_RIGHT(tmp, field); \
1335  } \
1336  return (parent); \
1337 }
1338 
1339 #define RB_NEGINF -1
1340 #define RB_INF 1
1341 
1342 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
1343 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
1344 #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
1345 #define RB_NEXT(name, x, y) name##_RB_NEXT(y)
1346 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
1347 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
1348 
1349 #define RB_FOREACH(x, name, head) \
1350  for ((x) = RB_MIN(name, head); \
1351  (x) != NULL; \
1352  (x) = name##_RB_NEXT(x))
1353 
1354 #endif /* _SYS_TREE_H_ */