MySQL 5.6.14 Source Code Document
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
event_tagging.c
1 /*
2  * Copyright (c) 2003, 2004 Niels Provos <provos@citi.umich.edu>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  * derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #ifdef HAVE_SYS_TYPES_H
33 #include <sys/types.h>
34 #endif
35 #ifdef HAVE_SYS_PARAM_H
36 #include <sys/param.h>
37 #endif
38 
39 #ifdef WIN32
40 #define WIN32_LEAN_AND_MEAN
41 #include <winsock2.h>
42 #include <windows.h>
43 #undef WIN32_LEAN_AND_MEAN
44 #else
45 #include <sys/ioctl.h>
46 #endif
47 
48 #include <sys/queue.h>
49 #ifdef HAVE_SYS_TIME_H
50 #include <sys/time.h>
51 #endif
52 
53 #include <errno.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #ifndef WIN32
58 #include <syslog.h>
59 #endif
60 #ifdef HAVE_UNISTD_H
61 #include <unistd.h>
62 #endif
63 
64 #include "event.h"
65 #include "evutil.h"
66 #include "log.h"
67 
68 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
69 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t tag);
70 int evtag_decode_tag(ev_uint32_t *ptag, struct evbuffer *evbuf);
71 
72 static struct evbuffer *_buf; /* not thread safe */
73 
74 void
75 evtag_init(void)
76 {
77  if (_buf != NULL)
78  return;
79 
80  if ((_buf = evbuffer_new()) == NULL)
81  event_err(1, "%s: malloc", __func__);
82 }
83 
84 /*
85  * We encode integer's by nibbles; the first nibble contains the number
86  * of significant nibbles - 1; this allows us to encode up to 64-bit
87  * integers. This function is byte-order independent.
88  */
89 
90 void
91 encode_int(struct evbuffer *evbuf, ev_uint32_t number)
92 {
93  int off = 1, nibbles = 0;
94  ev_uint8_t data[5];
95 
96  memset(data, 0, sizeof(ev_uint32_t)+1);
97  while (number) {
98  if (off & 0x1)
99  data[off/2] = (data[off/2] & 0xf0) | (number & 0x0f);
100  else
101  data[off/2] = (data[off/2] & 0x0f) |
102  ((number & 0x0f) << 4);
103  number >>= 4;
104  off++;
105  }
106 
107  if (off > 2)
108  nibbles = off - 2;
109 
110  /* Off - 1 is the number of encoded nibbles */
111  data[0] = (data[0] & 0x0f) | ((nibbles & 0x0f) << 4);
112 
113  evbuffer_add(evbuf, data, (off + 1) / 2);
114 }
115 
116 /*
117  * Support variable length encoding of tags; we use the high bit in each
118  * octet as a continuation signal.
119  */
120 
121 int
122 evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t tag)
123 {
124  int bytes = 0;
125  ev_uint8_t data[5];
126 
127  memset(data, 0, sizeof(data));
128  do {
129  ev_uint8_t lower = tag & 0x7f;
130  tag >>= 7;
131 
132  if (tag)
133  lower |= 0x80;
134 
135  data[bytes++] = lower;
136  } while (tag);
137 
138  if (evbuf != NULL)
139  evbuffer_add(evbuf, data, bytes);
140 
141  return (bytes);
142 }
143 
144 static int
145 decode_tag_internal(ev_uint32_t *ptag, struct evbuffer *evbuf, int dodrain)
146 {
147  ev_uint32_t number = 0;
148  ev_uint8_t *data = EVBUFFER_DATA(evbuf);
149  int len = EVBUFFER_LENGTH(evbuf);
150  int count = 0, shift = 0, done = 0;
151 
152  while (count++ < len) {
153  ev_uint8_t lower = *data++;
154  number |= (lower & 0x7f) << shift;
155  shift += 7;
156 
157  if (!(lower & 0x80)) {
158  done = 1;
159  break;
160  }
161  }
162 
163  if (!done)
164  return (-1);
165 
166  if (dodrain)
167  evbuffer_drain(evbuf, count);
168 
169  if (ptag != NULL)
170  *ptag = number;
171 
172  return (count);
173 }
174 
175 int
176 evtag_decode_tag(ev_uint32_t *ptag, struct evbuffer *evbuf)
177 {
178  return (decode_tag_internal(ptag, evbuf, 1 /* dodrain */));
179 }
180 
181 /*
182  * Marshal a data type, the general format is as follows:
183  *
184  * tag number: one byte; length: var bytes; payload: var bytes
185  */
186 
187 void
188 evtag_marshal(struct evbuffer *evbuf, ev_uint32_t tag,
189  const void *data, ev_uint32_t len)
190 {
191  evtag_encode_tag(evbuf, tag);
192  encode_int(evbuf, len);
193  evbuffer_add(evbuf, (void *)data, len);
194 }
195 
196 /* Marshaling for integers */
197 void
198 evtag_marshal_int(struct evbuffer *evbuf, ev_uint32_t tag, ev_uint32_t integer)
199 {
200  evbuffer_drain(_buf, EVBUFFER_LENGTH(_buf));
201  encode_int(_buf, integer);
202 
203  evtag_encode_tag(evbuf, tag);
204  encode_int(evbuf, EVBUFFER_LENGTH(_buf));
205  evbuffer_add_buffer(evbuf, _buf);
206 }
207 
208 void
209 evtag_marshal_string(struct evbuffer *buf, ev_uint32_t tag, const char *string)
210 {
211  evtag_marshal(buf, tag, string, strlen(string));
212 }
213 
214 void
215 evtag_marshal_timeval(struct evbuffer *evbuf, ev_uint32_t tag, struct timeval *tv)
216 {
217  evbuffer_drain(_buf, EVBUFFER_LENGTH(_buf));
218 
219  encode_int(_buf, tv->tv_sec);
220  encode_int(_buf, tv->tv_usec);
221 
222  evtag_marshal(evbuf, tag, EVBUFFER_DATA(_buf),
223  EVBUFFER_LENGTH(_buf));
224 }
225 
226 static int
227 decode_int_internal(ev_uint32_t *pnumber, struct evbuffer *evbuf, int dodrain)
228 {
229  ev_uint32_t number = 0;
230  ev_uint8_t *data = EVBUFFER_DATA(evbuf);
231  int len = EVBUFFER_LENGTH(evbuf);
232  int nibbles = 0;
233 
234  if (!len)
235  return (-1);
236 
237  nibbles = ((data[0] & 0xf0) >> 4) + 1;
238  if (nibbles > 8 || (nibbles >> 1) + 1 > len)
239  return (-1);
240  len = (nibbles >> 1) + 1;
241 
242  while (nibbles > 0) {
243  number <<= 4;
244  if (nibbles & 0x1)
245  number |= data[nibbles >> 1] & 0x0f;
246  else
247  number |= (data[nibbles >> 1] & 0xf0) >> 4;
248  nibbles--;
249  }
250 
251  if (dodrain)
252  evbuffer_drain(evbuf, len);
253 
254  *pnumber = number;
255 
256  return (len);
257 }
258 
259 int
260 evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf)
261 {
262  return (decode_int_internal(pnumber, evbuf, 1) == -1 ? -1 : 0);
263 }
264 
265 int
266 evtag_peek(struct evbuffer *evbuf, ev_uint32_t *ptag)
267 {
268  return (decode_tag_internal(ptag, evbuf, 0 /* dodrain */));
269 }
270 
271 int
272 evtag_peek_length(struct evbuffer *evbuf, ev_uint32_t *plength)
273 {
274  struct evbuffer tmp;
275  int res, len;
276 
277  len = decode_tag_internal(NULL, evbuf, 0 /* dodrain */);
278  if (len == -1)
279  return (-1);
280 
281  tmp = *evbuf;
282  tmp.buffer += len;
283  tmp.off -= len;
284 
285  res = decode_int_internal(plength, &tmp, 0);
286  if (res == -1)
287  return (-1);
288 
289  *plength += res + len;
290 
291  return (0);
292 }
293 
294 int
295 evtag_payload_length(struct evbuffer *evbuf, ev_uint32_t *plength)
296 {
297  struct evbuffer tmp;
298  int res, len;
299 
300  len = decode_tag_internal(NULL, evbuf, 0 /* dodrain */);
301  if (len == -1)
302  return (-1);
303 
304  tmp = *evbuf;
305  tmp.buffer += len;
306  tmp.off -= len;
307 
308  res = decode_int_internal(plength, &tmp, 0);
309  if (res == -1)
310  return (-1);
311 
312  return (0);
313 }
314 
315 int
316 evtag_consume(struct evbuffer *evbuf)
317 {
318  ev_uint32_t len;
319  if (decode_tag_internal(NULL, evbuf, 1 /* dodrain */) == -1)
320  return (-1);
321  if (evtag_decode_int(&len, evbuf) == -1)
322  return (-1);
323  evbuffer_drain(evbuf, len);
324 
325  return (0);
326 }
327 
328 /* Reads the data type from an event buffer */
329 
330 int
331 evtag_unmarshal(struct evbuffer *src, ev_uint32_t *ptag, struct evbuffer *dst)
332 {
333  ev_uint32_t len;
334  ev_uint32_t integer;
335 
336  if (decode_tag_internal(ptag, src, 1 /* dodrain */) == -1)
337  return (-1);
338  if (evtag_decode_int(&integer, src) == -1)
339  return (-1);
340  len = integer;
341 
342  if (EVBUFFER_LENGTH(src) < len)
343  return (-1);
344 
345  if (evbuffer_add(dst, EVBUFFER_DATA(src), len) == -1)
346  return (-1);
347 
348  evbuffer_drain(src, len);
349 
350  return (len);
351 }
352 
353 /* Marshaling for integers */
354 
355 int
356 evtag_unmarshal_int(struct evbuffer *evbuf, ev_uint32_t need_tag,
357  ev_uint32_t *pinteger)
358 {
359  ev_uint32_t tag;
360  ev_uint32_t len;
361  ev_uint32_t integer;
362 
363  if (decode_tag_internal(&tag, evbuf, 1 /* dodrain */) == -1)
364  return (-1);
365  if (need_tag != tag)
366  return (-1);
367  if (evtag_decode_int(&integer, evbuf) == -1)
368  return (-1);
369  len = integer;
370 
371  if (EVBUFFER_LENGTH(evbuf) < len)
372  return (-1);
373 
374  evbuffer_drain(_buf, EVBUFFER_LENGTH(_buf));
375  if (evbuffer_add(_buf, EVBUFFER_DATA(evbuf), len) == -1)
376  return (-1);
377 
378  evbuffer_drain(evbuf, len);
379 
380  return (evtag_decode_int(pinteger, _buf));
381 }
382 
383 /* Unmarshal a fixed length tag */
384 
385 int
386 evtag_unmarshal_fixed(struct evbuffer *src, ev_uint32_t need_tag, void *data,
387  size_t len)
388 {
389  ev_uint32_t tag;
390 
391  /* Initialize this event buffer so that we can read into it */
392  evbuffer_drain(_buf, EVBUFFER_LENGTH(_buf));
393 
394  /* Now unmarshal a tag and check that it matches the tag we want */
395  if (evtag_unmarshal(src, &tag, _buf) == -1 || tag != need_tag)
396  return (-1);
397 
398  if (EVBUFFER_LENGTH(_buf) != len)
399  return (-1);
400 
401  memcpy(data, EVBUFFER_DATA(_buf), len);
402  return (0);
403 }
404 
405 int
406 evtag_unmarshal_string(struct evbuffer *evbuf, ev_uint32_t need_tag,
407  char **pstring)
408 {
409  ev_uint32_t tag;
410 
411  evbuffer_drain(_buf, EVBUFFER_LENGTH(_buf));
412 
413  if (evtag_unmarshal(evbuf, &tag, _buf) == -1 || tag != need_tag)
414  return (-1);
415 
416  *pstring = calloc(EVBUFFER_LENGTH(_buf) + 1, 1);
417  if (*pstring == NULL)
418  event_err(1, "%s: calloc", __func__);
419  evbuffer_remove(_buf, *pstring, EVBUFFER_LENGTH(_buf));
420 
421  return (0);
422 }
423 
424 int
425 evtag_unmarshal_timeval(struct evbuffer *evbuf, ev_uint32_t need_tag,
426  struct timeval *ptv)
427 {
428  ev_uint32_t tag;
429  ev_uint32_t integer;
430 
431  evbuffer_drain(_buf, EVBUFFER_LENGTH(_buf));
432  if (evtag_unmarshal(evbuf, &tag, _buf) == -1 || tag != need_tag)
433  return (-1);
434 
435  if (evtag_decode_int(&integer, _buf) == -1)
436  return (-1);
437  ptv->tv_sec = integer;
438  if (evtag_decode_int(&integer, _buf) == -1)
439  return (-1);
440  ptv->tv_usec = integer;
441 
442  return (0);
443 }